skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pstra̧gowski, Piotr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The purpose of this paper and its sequel is to develop the geometry built from the commutative algebras that naturally appear as the homology of differential graded algebras and, more generally, as the homotopy of algebras in spectra. The commutative algebras in question are those in the symmetric monoidal category of graded abelian groups, and, being commutative, they form the affine building blocks of a geometry, as commutative rings form the affine building blocks of algebraic geometry. We name this geometry Dirac geometry, because the grading exhibits the hallmarks of spin in that it is a remnant of the internal structure encoded byanima, it distinguishes symmetric and anti-symmetric behavior, and the coherent cohomology of Dirac schemes and Dirac stacks, which we develop in the sequel, admits half-integer Serre twists. Thus, informally, Dirac geometry constitutes a “square root” of$$\mathbb {G}_m$$ G m -equivariant algebraic geometry. 
    more » « less